
Function reference
-
ClassifyGenes() - Build the type column for the gene info table.
-
Design - A list of predefined names for design vectors
-
DesignSemantics() - Build the design semantics list
-
MakeColdata() - Extract an annotation table from a formatted names vector
-
ReadCounts() - Read a count table
-
ReadFeatureCounts() - Read featureCounts
-
ReadGRAND() - Read the output of GRAND-SLAM 2.0 into a grandR object.
-
ReadGRAND3() - Read the output of GRAND-SLAM 3.0 into a grandR object.
-
ReadNewTotal() - Read sparse new/total matrices
-
Semantics.concentration() - Semantics for concentration columns
-
Semantics.time() - Semantics for time columns
-
as.Seurat.grandR() - Create Seurat object from a grandR object
-
ComputeAbsolute() - Compute absolute expression using ERCC spike ins
-
ComputeNtrPosteriorQuantile()ComputeNtrCI()ComputeNtrPosteriorLower()ComputeNtrPosteriorUpper() - Compute NTR quantiles
-
FilterGenes() - Filter genes
-
Normalize()NormalizeFPKM()NormalizeRPM()NormalizeTPM() - Normalization
-
NormalizeBaseline() - Normalization to a baseline
-
Scale() - Scale data
-
Analyses()AddAnalysis()DropAnalysis() - Analysis table functions
-
Coldata()`Coldata<-`() - Get the column annotation table or add additional columns to it
-
Condition()`Condition<-`() - Get or set the conditions in the column annotation table.
-
DefaultSlot()`DefaultSlot<-`() - Get or set the default slot for a grandR object.
-
GeneInfo()`GeneInfo<-`() - Get the gene annotation table or add additional columns to it
-
Plots()AddGenePlot()AddGlobalPlot()PlotGene()PlotGlobal()DropPlots() - Stored plot functions
-
Slots()DropSlot()AddSlot() - Slot functions
-
UpdateSymbols() - Update symbols using biomaRt
-
grandR()Title()IsSparse()dim(<grandR>)is.grandR()dimnames(<grandR>)print(<grandR>)Metadata()subset(<grandR>)split(<grandR>)RenameColumns()SwapColumns()merge(<grandR>) - Create a grandR object and retrieve basic information
-
ComputeColumnStatistics() - Compute statistics for all columns (i.e. samples or cells)
-
ComputeExpressionPercentage() - Expression percentage computation
-
ComputePseudoNtr() - Compute pseudo NTRs from two count matrices
-
ComputeTotalExpression() - Total expression computation
-
CreateConvolutionTable() - Create Convolution Table from a Seurat object
-
CreatePseudobulkTable() - Create Pseudobulk Table from a Seurat object
-
GetAnalysisTable() - Obtain a table of analysis results values
-
GetData() - Obtain a tidy table of values for a gene or a small set of genes
-
GetMatrix() - Obtain a genes x values table as a large matrix
-
GetSummarizeMatrix() - Create a summarize matrix
-
GetTable() - Obtain a genes x values table
-
PoolColumns() - Pool reads across columns
-
SaveNtrSlot() - Copy the NTR slot and save under new name
-
Summarize() - Summarize a data matrix
-
UseNtrSlot() - Copy the NTR slot and save under new name
-
DESeq2BIC() - Compute the Bayesian information criterion (BIC)
-
EstimateRegulation() - Estimate regulation from snapshot experiments
-
GetContrasts() - Create a contrast matrix
-
GetPairContrasts() - Create a contrast matrix for two given conditions
-
GetSignificantGenes() - Significant genes
-
LFC() - Estimation of log2 fold changes
-
LikelihoodRatioTest() - Compute a likelihood ratio test.
-
Pairwise() - Log2 fold changes and Wald tests for differential expression
-
PairwiseDESeq2() - Perform Wald tests for differential expression
-
ComputeNonConstantParam()EvaluateNonConstantParam() - Compute and evaluate functions for non constant rates
-
FitKinetics() - Fit kinetic models to all genes.
-
FitKineticsGeneLeastSquares() - Fit a kinetic model according to non-linear least squares.
-
FitKineticsGeneLogSpaceLinear() - Fit a kinetic model using a linear model.
-
FitKineticsGeneNtr() - Fit a kinetic model using the degradation rate transformed NTR posterior distribution.
-
FitKineticsPulseR() - Fit kinetics using pulseR
-
PlotSimulation() - Plot simulated data
-
SimulateKinetics() - Simulate the kinetics of old and new RNA for given parameters.
-
f.nonconst() - Function to compute the abundance of new or old RNA at time t for non-constant rates.
-
f.nonconst.linear() - Function to compute the abundance of new or old RNA at time t for non-constant rates.
-
f.old.equi()f.old.nonequi()f.new() - Functions to compute the abundance of new or old RNA at time t.
-
ComputeSteadyStateHalfLives() - Steady state half-lives for each sample
-
FindReferences() - Obtain reference columns (samples or cells) for all columns (samples or cells) in the data set
-
FitKineticsGeneSnapshot() - Compute the posterior distributions of RNA synthesis and degradation for a particular gene
-
FitKineticsSnapshot() - Fits RNA kinetics from snapshot experiments
-
TransformSnapshot() - Estimate parameters for a one-shot experiment.
-
AnalyzeGeneSets() - Gene set analysis
-
ListGeneSets() - List available gene sets
-
PlotGeneGroupsBars() - Plot gene values as bars
-
PlotGeneGroupsPoints() - Plot gene groups as points
-
PlotGeneOldVsNew() - Gene plot comparing old vs new RNA
-
PlotGeneProgressiveTimecourse() - Plot progressive labeling timecourses
-
PlotGeneSnapshotTimecourse() - Gene plot for snapshot timecourse data
-
PlotGeneTotalVsNtr() - Gene plot comparing total RNA vs the NTR
-
FormatCorrelation() - Formatting function for correlations
-
MAPlot() - Make an MA plot
-
PlotAnalyses() - Convenience function to make the same type of plot for multple analyses.
-
PlotHeatmap() - Create heatmaps from grandR objects
-
PlotPCA() - Make a PCA plot
-
PlotScatter() - Make a scatter plot
-
PlotTypeDistribution() - Plot the distribution of gene types
-
Transform.no()Transform.Z()Transform.VST()Transform.logFC() - Transformations for PlotHeatmap
-
VulcanoPlot() - Make a Vulcano plot
-
ServeGrandR() - Serve a shiny web interface
-
ComputeSummaryStatistics() - Compute summary statistics
-
Findno4sUPairs() - Find equivalent no4sU samples for 4sU samples
-
Correct4sUDropoutHLFactor()Correct4sUDropoutHLSpline() - Correct for 4sU dropout
-
Plot4sUDropoutRankAll()Plot4sUDropoutAll()Plot4sUDropoutDeferAll()Plot4sUDropoutRankDeferAll()Plot4sUDropoutRank()Plot4sUDropout() - Perform 4sU dropout tests
-
Estimate4sUDropoutPercentage()Estimate4sUDropoutPercentageForSample() - Estimate 4sU dropout percentages
Temporal recalibration
Functions for recalibration of labeling times (to get effective labeling from nominal labeling times)
-
CalibrateEffectiveLabelingTimeKineticFit() - Uses the kinetic model to calibrate the effective labeling time.
-
CalibrateEffectiveLabelingTimeMatchHalflives() - Calibrate the effective labeling time by matching half-lives to a .reference
-
CreatePdfs()CreatePdfsParameters()CreatePdfsComparison()CreatePdfsProfiles() - Convencience methods for creating QC pdfs
-
GetDiagnosticParameters() - Describe parameters relevant to diagnostics
-
PlotConversionFreq() - Diagnostic plot for conversion frequencies
-
PlotMismatchPositionForSample() - Diagnostic plot for mismatch position for columns (by sample)
-
PlotMismatchPositionForType() - Diagnostic plot for mismatch position for columns (by mismatch type)
-
PlotModelCompareConv() - Diagnostic plot for estimated models (global conversion rate)
-
PlotModelCompareErr() - Diagnostic plot for estimated models (global error rate)
-
PlotModelCompareErrPrior() - Diagnostic plot for estimated models (global error rate)
-
PlotModelCompareLL() - Diagnostic plot for estimated models (log likelihoods)
-
PlotModelCompareNtr() - Diagnostic plot for estimated models (global NTR)
-
PlotModelConv() - Diagnostic plot for estimated models (global conversion rate)
-
PlotModelErr() - Diagnostic plot for estimated models (global error rate)
-
PlotModelLabelTimeCourse() - Diagnostic plot for estimated models (4sU increase)
-
PlotModelNtr() - Diagnostic plot for estimated models (global NTR)
-
PlotModelShape() - Diagnostic plot for estimated models (global shape parameter)
-
PlotProfileLikelihood() - Diagnostic plot for estimated models (global error rate)
-
SimulateReadsForSample() - Simulate metabolic labeling - nucleotide conversion RNA-seq data.
-
SimulateTimeCourse() - Simulate a complete time course of metabolic labeling - nucleotide conversion RNA-seq data.
-
SimulateTimeCourseNonConstant() - Simulate a complete time course of metabolic labeling - nucleotide conversion RNA-seq data.
-
ApplyContrasts() - Apply a function over contrasts
-
Defer() - Defer calling a function
-
IsParallel() - Checks for parallel execution
-
RotatateAxisLabels() - Rotate x axis labels
-
SetParallel() - Set up parallel execution
-
ToIndex() - Obtain the indices of the given genes
-
check.analysis()check.slot()check.mode.slot() - Internal functions to check for a valid analysis or slot names.
-
data.apply() - Internal function to apply functions to all slots etc.
-
density2d() - Density estimation in 2d
-
estimate.dispersion() - Estimate dispersion parameters for a count matrix using DESeq2
-
get.mode.slot() - Internal functions to parse mode.slot strings
-
structure2vector()kinetics2vector() - Convert a structure into a vector